
inst-int 2014

Helping TalkTiny Things

9 - 10:30: theory

10:30 - 12: intro

13 - 15:30 code+demos

15:30 - 16:30
troubleshooting

Why am I teaching this
course?

frog: I work there
CIID: I teach there
seattle: I live there

I’m kind of a designer & I’m also
kind of a programmer but mostly I
think about how things should
work

Let things be themselves
Let things that are supposed to
be computers be computers
Let people use things they know

Things don’t need to be screens if they can
just talk to a screen
!

Things that can talk to each other without
us needing to intervene are fascinating

talking is hard

Electricity over wires, Electricity
through air, Light through air,
Light through wires, Sound wave,
Sound pattern, Vibration, Color,

Why are you taking
this course?

caveats

This workshop is insane
Things might not work
We might run out of time
Everything could go wrong
You may not learn one thing you wanted to

general principles

This is about 1 tool that uses 1 technology
but it’s also more generally about the
internet of things (yeah yeah I know).

What’s radio?

ELF

VLF LF MF HF VHF UHF SHF EHF

IR UV XRAY GAMMA COSMIC

FMAM Radar

wifi
bluetooth

ISM

10khz 1mhz 100mhz 10ghz

4G

Visible

30km 0.3km 3m 3cm

315 mhz
434 mhz
915 mhz
2.4 ghz (Bluetooth!)
5.8 ghz

ISM frequency = we can use it

One way (aka simplex)

Half duplex

Full duplex

Radio frequency communication

Duplex implies data not just sound.
Data implies 1 and 0s.
So how do you turn waves into 1s and 0s?

Sending some data ASK
0 1 0 1 0 1 0 0

Sending some data FSK

0 1 0 1 0 1 0 0

What happens if there’s noise?

What’s noise? Something on the same
frequency. A wifi router, microwave, wireless
mouse, a remote control car, garage door, etc.
!

Well, that depends. Bluetooth uses frequency

Wifi Router Microwave

2.4ghz 2.485ghz

What is Bluetooth?

2.4 to 2.485 GHz
frequency hopping spread spectrum
full-duplex signal at 1600 hops/sec
adaptive hopping among 79 freqs

What does Bluetooth need?

A transceiver
An antennae
A mC
Some power

How does Bluetooth work?

caveat: this is not how BLE works
!

1. frequency agreement
2. communication agreement
3. communication

How does BLE work?
I’m a device!

Yeah! What kind of
device are you?

I’m an X. What
are you? I’m an Y. Let’s

connect!
Ok. Do you have
any services? Yep, I’ve got XX

and YY

What’s characteristics
does XX have? XX has AAA and BBB

Can I read AAA?
Yep. You can read it.

Can I read BBB?
Nope. You can only
write to it.

Ah, well I’ll subscribe
to AAA. What’s it at
now? It’s 0x93c8d0

How does BLE work?

Device: a device
Service: a set of characteristics that other
devices can be read and written
Characteristic: a data point in a service that
can be read/written

nrf51822: a
Transceiver + ARM mC

nrf51822
ARM M0 core
Bluetooth transceiver
256KB flash 16KB RAM
3 data rates (2Mbps/1Mbps/250kbps)

31 GPIO
Up to 4 PWM

nrf58122 made friendly!

RFDuino!

What’s great about RFDuino?

nrf51822 in Arduino ready form!
It’s got a nice Arduino-y API for turning on
BLE, sending/receiving data, all that stuff! 
Has a ceramic antennae on it
Uses SoftDevice 120 (icyc)

What’s not great about RFDuino?

Power consumption
Closed source bootloader (more on this later)
Much more expensive
Limited in some respects

Installation on your computer

Arduino IDE version 1.5 beta (!)
RFDuino library
An RFDuino
A programmer
A 10 mF Capacitor

DTR

RXI

TXO

3V3

CTS

GND

What are you going to
talk to?

caveats apply!

Talk to an iOS device

openFrameworks

C++

Creative Code
OSX, Windows, Linux, Android, iOS
Not for the faint of heart but also not really
that scary

cinder

C++

Creative Code
OSX, Windows, iOS
Not for the faint of heart

caveats apply!

Talk to an Android device

processing

Java
Creative Code
OSX, Windows, Linux, Android, Browsers-ish
Not scary but can get messy

no caveats apply!

Talk to another
RFDuino

GZLL (gazelle)

1 host connects to up to 8 slaves in a star
Host must be "always on" (i.e. draws lots of
power).
Slaves are power-efficient.
Host always listens, slave initiates

GZLL (gazelle)

A host has to wait for a packet from a slave
before it can send data to it.
One slave can talk to several hosts and
devices can switch between host and slave,
enabling more complicated networks.

this might get messy

Lets make stuff

What can go wrong?

Your computer isn’t set up right
You don’t have the right version of Arduino
You don’t have the right version of Android
20+ RFDuinos in the same room

Something else...

Are you ready?

Do you have an RFDuino board?
Do you have something to talk to it?
Do you have either Processing or Xcode set up
properly?
Do you have Arduino ready?

GROUND

3.3V

NOPE

RESET

TX

RX

GROUND

3.3V

NOPE

RESET

TX

RX

Blinking an LED!

Let’s not worry about talking just yet, let’s
just make sure everybody can program their
RFDuino first.

Blinking an LED!

Look in Examples->Basics.

Change the pin to a pin you actually have.
Connect an LED to a pin.
Does it work?

Saying ‘hi’

1. start up the bluetooth stuff
2. Start up a service
3. send some data over that service

DTR

RXI

TXO

3V3

CTS

GND

Saying ‘hi’
RFduinoBLE.send();	
RFduinoBLE.send(1);	 //	 sends	 ‘1’	
RFduinoBLE.send(“hi”);	 //	 sends	
‘hi’

Hearing a ‘hi’

(this excludes all the platform related stuff)
1. start up the bluetooth stuff
2. look for your device
3. Subscribe to a characteristic on a service
3. listen for changes on the characteristic

SO MANY DEVICES!

There’s 25 of you, so make sure you give
your device a name that your program can
find. 25 devices called RFDuino isn’t gonna
work.

Reading a slider

1. Make a pin an input
2. Check for changes on the pin
3. Send some data out!

analog vs digital

0 or 1

0 to 1024

Hearing a slider

(this excludes all the platform related stuff)
1. start up the bluetooth stuff
2. look for your device
3. Subscribe to a characteristic on a service
3. listen for changes on the characteristic

Changing an LED (RFD)

1. Set a device name
2. Start up the BLE
3. Wait for RFduinoBLE_onReceive() to get
triggered
4. Do something with the data you get

Changing an LED (App)

1. Look for your device name
2. Connect to it
3. Connect to the service
4. Send some data at some interval

Reading a potentiometer

First we need to read the potentiometer, so:
analogRead();	

!

Then we need to send the value, so:
RFduinoBLE.sendInt();

SPI

What’s SPI?
Three lines: one TX, one RX, one clock
Clock says: send a bit
TX says: send with this one
RX says: listen with this one

SPI
1 1 0 1

SPI

Reading an accelerometer

Make an SPI
Start the service
Get the accelerometer data
Send it to the listening device
Take a break

Hearing an accelerometer

Connect to device
Start the service+characteristic listening
Get some data at an odd interval
Do something with it when you get it

Reading multi-byte

The gnarliest of method calls:
memcpy()	

take some memory and put it in another place
and convert to something else in that other
place

Types types types!

“1” isn’t 1
uint16_t = 16 bits of int
char = 8 bits of character
!

Sending multi-byte
int16_t	 XValue	 =	 12;	
char	 buffer[sizeof(int16_t)	 *	 3];	
memcpy(&buffer[0],	 	
	 	 	 	 	 	 	 &XValue,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 sizeof(int16_t));

Reading multi-byte
const	 char	 *data;	
int16_t	 x;	
size_t	 sz	 =	 sizeof(int16_t)	
memcpy(&x,	 &data[0],	 sz);

0 0 0 1 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Sending other data

You can send all kinds of stuff: float, int, byte
Keep what you send simple
Don’t send things sequentially, send them in
arrays

hot rfduino on rfduino action

GZLL

HOST

DEVICE0 DEVICE1

DEVICE2

DEVICE3

DEVICE4
DEVICE5

DEVICE6

DEVICE7

Starting it up

What role is the GZLL?

HOST,DEVICE0,DEVICE1,DEVICE2…	

Wait for some data (on either side)

Receiving
RFduinoGZLL_onReceive(
	 	 	 	 	 	 	 device_t	 device,	 	
	 	 	 	 	 	 	 int	 rssi,	 	
	 	 	 	 	 	 	 char	 *data,	 	
	 	 	 	 	 	 	 int	 len);

Hubs

Get some data from a spoke
RFduinoGZLL_onReceive()	

Send some data to a spoke
RFduinoGZLL.sendToHost()

Spokes

Get some data from a hub
RFduinoGZLL_onReceive()	

Send some data to a hub
RFduinoGZLL.sendToDevice(device,	
"OK");

Can we try it out?

Sure. We have to hack the library but then
we can say what device we want to talk to.
!
RFduinoGZLL_host_base_address	 =	
0x0D0A0704;

Can we try it out?

Sure. We have to hack the library but then
we can say what device we want to talk to.
!

Both devices and hosts set their ID.

Giving out names

What’s the device name?
RFduinoGZLL_device_base_address	
!

What’s the host name?
RFduinoGZLL_host_base_address

Oh man what to do now?

What’s next?

Play with GZLL!

Send stuff to other BLE devices
Create wearable device systems
Make tiny little mesh networks
!

Play w/non-RFDuino

The nrf51822 is pretty cool & you can play
with it outside of RFDuino.
There’s lots of other BLE devices: nRF8001,
ble112, ble113, the list goes on
!

Play w/non-Bluetooth

nrf2401 is pretty rad: 315, 443, and 915mhz
Cheap little 315mhz radios are awesome
I work on a series of libraries for Arduino+
radio
Great resources on the Arduino forum

Other ways things talk

RFID { meh }
NFC {kinda awesome }
wifi { pain in the butt }
IR {awesome }
Sound { awesome but hard }

Make some things

Check out the RFDuino forums
Check out the Arduino forums
Talk to each other
Email me, I’ll halp

